Odd-even effect in the hydrophobicity of n-alkanethiolate self-assembled monolayers depends upon the roughness of the substrate and the orientation of the terminal moiety.

نویسندگان

  • Lucas B Newcomb
  • Ian D Tevis
  • Manza B J Atkinson
  • Symon M Gathiaka
  • Rafael E Luna
  • Martin Thuo
چکیده

The origin of the odd-even effect in properties of self-assembled monolayers (SAMs) and/or technologies derived from them is poorly understood. We report that hydrophobicity and, hence, surface wetting of SAMs are dominated by the nature of the substrate (surface roughness and identity) and SAM tilt angle, which influences surface dipoles/orientation of the terminal moiety. We measured static contact angles (θs) made by water droplets on n-alkanethiolate SAMs with an odd (SAM(O)) or even (SAM(E)) number of carbons (average θs range of 105.8-112.1°). When SAMs were fabricated on smooth "template-stripped" metal (M(TS)) surfaces [root-mean-square (rms) roughness = 0.36 ± 0.01 nm for Au(TS) and 0.60 ± 0.04 nm for Ag(TS)], the odd-even effect, characterized by a zigzag oscillation in values of θs, was observed. We, however, did not observe the same effect with rougher "as-deposited" (M(AD)) surfaces (rms roughness = 2.27 ± 0.16 nm for Au(AD) and 5.13 ± 0.22 nm for Ag(AD)). The odd-even effect in hydrophobicity inverts when the substrate changes from Au(TS) (higher θs for SAM(E) than SAM(O), with average Δθs |n - (n + 1)| ≈ 3°) to Ag(TS) (higher θs for SAM(O) than SAM(E), with average Δθs |n - (n + 1)| ≈ 2°). A comparison of hydrophobicity across Ag(TS) and Au(TS) showed a statistically significant difference (Student's t test) between SAM(E) (Δθs |Ag evens - Au evens| ≈ 5°; p < 0.01) but failed to show statistically significant differences on SAM(O) (Δθs |Ag odds - Au odds| ≈ 1°; p > 0.1). From these results, we deduce that the roughness of the metal substrate (from comparison of M(AD) versus M(TS)) and orientation of the terminal -CH2CH3 (by comparing SAM(E) and SAM(O) on Au(TS) versus Ag(TS)) play major roles in the hydrophobicity and, by extension, general wetting properties of n-alkanethiolate SAMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Porter-Whitesides Discrepancy: Revisiting Odd-Even Effects in Wetting Properties of n-Alkanethiolate SAMs

This review discusses the Porter-Whitesides discrepancy in wetting properties of n-alkanethiolate self-assembled monolayers (SAMs). About 25 years ago, Whitesides and coworker failed to observe any odd-even effect in wetting, however, Porter and his coworker did, albeit in select cases. Most previous studies agreed with Whitesides’ results, suggesting the absence of the odd-even effect in hydro...

متن کامل

Empirical Evidence for Roughness-Dependent Limit in Observation of Odd-Even Effect in Wetting Properties of Polar Liquids on n-Alkanethiolate Self-Assembled Monolayers.

Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This ...

متن کامل

Limits to the Effect of Substrate Roughness or Smoothness on the Odd-Even Effect in Wetting Properties of n-Alkanethiolate Monolayers.

This study investigates the effect of roughness on interfacial properties of an n-alkanethiolate self-assembled monolayer (SAM) and uses hydrophobicity to demonstrate the existence of upper and lower limits. This article also sheds light on the origin of the previously unexplained gradual increase in contact angles with increases in the size of the molecule making the SAM. We prepared Au surfac...

متن کامل

Effect of Substrate Morphology on the Odd-Even Effect in Hydrophobicity of Self-Assembled Monolayers.

Surface roughness, often captured through root-mean-square roughness (Rrms), has been shown to impact the quality of self-assembled monolayers (SAMs) formed on coinage metals. Understanding the effect of roughness on hydrophobicity of SAMs, however, is complicated by the odd-even effect-a zigzag oscillation in contact angles with changes in molecular length. We recently showed that for surfaces...

متن کامل

Surface Modification of Glass Beads with an Aminosilane Monolayer

Self-assembled monolayers (SAMs) are monomolecular layers which are spontaneously formed upon immersing a solid substrate into a solution containing functional molecules. The most attractive feature of SAMs is molecular level control over the modification of surfaces, and incorporation of multiple or multilayer molecular components onto the monolayer leads to various functional properties. SAMs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 40  شماره 

صفحات  -

تاریخ انتشار 2014